Membuka Rahasia Putaran 3D Skyrmion Magnetik Untuk Mendukung Elektronik Masa Depan
Para peneliti di Berkeley Lab telah meningkatkan pemahaman tentang skyrmion magnetik dengan mengembangkan teknik untuk menggambarkan struktur 3D mereka.
Ini "skala nano" mengacu pada dimensi yang diukur dalam nanometer (nm), dengan satu nanometer sama dengan sepersejuta meter. Skala ini mencakup ukuran sekitar 1 hingga 100 nanometer, yang menampilkan sifat fisik, kimia, dan biologi unik yang tidak terdapat pada material curah. Pada skala nano, material menunjukkan fenomena seperti efek kuantum dan peningkatan rasio luas permukaan terhadap volume, yang secara signifikan dapat mengubah perilaku optik, listrik, dan magnetnya. Karakteristik ini menjadikan material berskala nano sangat berharga untuk berbagai aplikasi, termasuk elektronik, kedokteran, dan ilmu material.
” data-gt-translate-attributes=”[{” attribute=”” tabindex=”0″ role=”link”>nanoscale objects show promise for revolutionizing microelectronics through enhanced data storage capabilities and reduced energy consumption.
A difficult-to-describe nanoscale structure called the magnetic skyrmion holds potential for creating advanced microelectronic devices, including those with vast data storage capacities and significantly lower power requirements.
However, to reliably integrate skyrmions into future computational devices—potentially even quantum computers—researchers need a more thorough understanding of their properties. Peter Fischer, a senior researcher at the Department of Energy’s Lawrence Berkeley National Laboratory (Berkeley Lab), led a project using 3D X-ray imaging to capture detailed views of skyrmions, specifically measuring the orientations of their magnetic spins throughout the entire object. “Our results provide a foundation for nanoscale metrology for spintronics devices,” Fischer said. This work was recently published in Science Advances.
“Our results provide a foundation for nanoscale metrology for spintronics devices.”
Peter Fischer
Characteristics and Potential of Skyrmions
Magnetic skyrmions can be thought of as spinning circles of magnetism, explains David Raftrey, a student researcher in Fischer’s team who was the lead author of this study. At the center, the magnetic spin is pointing upward, while moving out from the center, the magnetism twists and pulls in a downward direction. What’s more, skyrmions are stable, small, fast, and not easily unfolded, a trait materials scientists dub “topological.”
These spin directions are part of the appeal for skyrmions because they might be used to carry and store information in much the same way that electrons carry and store information in current devices. “However, relying on the charge of the electron, as it is done today, comes with inevitable energy losses. Using spins, the losses will be significantly lower,” Fischer said.
Exploring 3D Structures of Skyrmions
Theoretical knowledge of skyrmions has been based on descriptions of them as 2D objects. However, in the real world of electronics and silicon wafers — no matter how thin — skyrmions have to be dealt with as 3D objects. To put skyrmions to work, or perhaps to one day synthesize custom skyrmions, researchers must be able to examine and understand their spin characteristics throughout the whole 3D object.
If you are looking at a skyrmion magnetic whirlpool from the top and start slicing off layers, you might think that each successive layer would be the same. “But that’s not the case,” Raftrey said. “And we said, okay, how can we get our arms around this? How do we actually demonstrate this?”
Breakthrough in Skyrmion Research
Raftrey took a thin magnetic layer, which was synthesized by colleagues from Western Digital, and patterned a nanodisk using the Molecular Foundry’s nanofabrication facility. To obtain 3D tomographic images he traveled to Switzerland to use a novel imaging technique called magnetic X-ray laminography at a microscopy beamline at the Swiss Light Source.
With X-ray laminography, “You can basically reconfigure and reconstruct [the skyrmion] dari sekian banyak gambar dan data ini,” kata Raftrey. Ini adalah proses yang memakan waktu berbulan-bulan, dan akhirnya menghasilkan pemahaman yang lebih baik tentang struktur putaran skyrmion.
Pemahaman penuh tentang tekstur putaran 3D skyrmions “membuka peluang untuk mengeksplorasi dan menyesuaikan perangkat spintronik topologi 3D dengan fungsionalitas yang ditingkatkan yang tidak dapat dicapai dalam dua dimensi,” kata Fischer.
Referensi: “Mengukur topologi skyrmion magnetik dalam tiga dimensi” oleh David Raftrey, Simone Finizio, Rajesh V. Chopdekar, Scott Dhuey, Temuujin Bayaraa, Paul Ashby, Jörg Raabe, Tiffany Santos, Sinéad Griffin dan Peter Fischer, 2 Oktober 2024, Kemajuan Ilmu Pengetahuan.
DOI: 10.1126/sciadv.adp8615
Molecular Foundry adalah fasilitas pengguna DOE Office of Science di Berkeley Lab.
Pekerjaan ini didukung oleh DOE Office of Science.